A genetic programming framework for content-based image retrieval
نویسندگان
چکیده
The effectiveness of CBIR systems can be improved by combining image features or by weighting image similarities, as computed from multiple feature vectors. However, feature combination without using similarity functions does not always make sense and the combined similarity function may have to be more complex than weight-based functions in order to satisfy users’ needs. We address this problem by presenting a Genetic Programming framework to the design of combined similarity functions. Our method allows non-linear combination of image similarities and is validated through several experiments, where the images are retrieved based on the shape of their objects. Experiments results demonstrate that the GP framework is suitable to the design of effective combination functions.
منابع مشابه
Image Retrieval with Relevance Feedback based on Genetic Programming
This paper presents a new content-based image retrieval framework with relevance feedback. This framework employs Genetic Programming to discover a combination of descriptors that better characterizes the user perception of image similarity. Several experiments were conducted to validate the proposed framework. These experiments employed three different image databases and color, shape, and tex...
متن کاملA Modified Grasshopper Optimization Algorithm Combined with CNN for Content Based Image Retrieval
Nowadays, with huge progress in digital imaging, new image processing methods are needed to manage digital images stored on disks. Image retrieval has been one of the most challengeable fields in digital image processing which means searching in a big database in order to represent similar images to the query image. Although many efficient researches have been performed for this topic so far, t...
متن کاملRelevance feedback based on genetic programming for image retrieval
This paper presents two content-based image retrieval frameworks with relevance feedback based on genetic programming. The first framework exploits only the user indication of relevant images. The second one considers not only the relevant but also the images indicated as non-relevant. Several experiments were conducted to validate the proposed frameworks. These experiments employed three diffe...
متن کاملImage Retrieval Using Dynamic Weighting of Compressed High Level Features Framework with LER Matrix
In this article, a fabulous method for database retrieval is proposed. The multi-resolution modified wavelet transform for each of image is computed and the standard deviation and average are utilized as the textural features. Then, the proposed modified bit-based color histogram and edge detectors were utilized to define the high level features. A feedback-based dynamic weighting of shap...
متن کاملImage retrieval using the combination of text-based and content-based algorithms
Image retrieval is an important research field which has received great attention in the last decades. In this paper, we present an approach for the image retrieval based on the combination of text-based and content-based features. For text-based features, keywords and for content-based features, color and texture features have been used. Query in this system contains some keywords and an input...
متن کاملتأملاتی بر نمایه سازی تصاویر: یک تصویر ارزشی برابر با هزار واژه
Purpose: This paper presents various image indexing techniques and discusses their advantages and limitations. Methodology: conducting a review of the literature review, it identifies three main image indexing techniques, namely concept-based image indexing, content-based image indexing and folksonomy. It then describes each technique. Findings: Concept-based image indexing is te...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Pattern Recognition
دوره 42 شماره
صفحات -
تاریخ انتشار 2009